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Abstract— This paper presents a cooperative approach to perform simultaneous localization and mapping (SLAM) algorithm based on 
additional, indirect observations of the features (landmarks). These additional observations are made with helping of collaborating vehicles 
by sharing their own observations of the features, which extends the observed area for each vehicle, so the proposed approach is called 
the Extended Observation-Cooperative SLAM (EO-CSLAM) algorithm. For implementing this approach, the paper adopts extended 
Kalman filter-simultaneous localization and mapping (EKF-SLAM) solution, expanding it to the cooperative case and to be applicable with 
unmanned surface vehicles (USVs) in marine environments. The proposed algorithm is first elucidated mathematically verifying its 
efficiency, and then, the performance gain is evaluated using simulations conducted for USVs with radar sensors. Simulation results show 
that the EO-CSLAM provides noticeable improvement versus the single-vehicle SLAM (or Mono-SLAM) in terms of localization accuracy 
and mapping performance. The extended observation (EO) principle allows implementing this approach with SLAM solutions other than 
EKF method, and in other application fields. 

Index Terms— Autonomous Navigation, Cooperative SLAM, Unmanned Surface Vehicles.   

——————————      —————————— 

1 INTRODUCTION
n the last two decades, unmanned surface vehicles (USVs) 
have seen growing spread in a wide spectrum of missions, 

including harbor surveillance, underwater mapping, water quality 
detection, and military tasks. In such applications, exploiting 
multiple vehicles in a cooperative manner provides more 
efficiency in terms of accuracy, surveillance area, sharing 
resources, reliability, flexibility and faster achievement, 
especially in unknown, unstructured, and large-scale 
surroundings such as marine environments. 

Whatever the task of the USV as an autonomous vehicle is, 
the accurate localization has an essential role for efficient 
achievement and accurate results. For instance, in underwater 
environmental modelling, accurate navigation is very 
important to provide sensors with referential transformations 
matrix and high-accuracy pose [1]. On the other hand, while 
GPS can be used for localization, its data can be inaccurate or 
inaccessible due to many possible reasons, such as               
atmospheric changes, noisy environments, multi-path errors, 
deliberate jamming, spoofing or confined areas where 
observing sufficient number of satellites can be difficult [2]. To 
solve these problems, simultaneous localization and mapping 
(SLAM) framework can be a proper alternative or 
incorporated to GPS [3]. Moreover, exploiting SLAM in a 
cooperative approach can provide more improvement in 
localization accuracy of USVs, in addition to the mentioned 
advantages of cooperative manners. 

The SLAM algorithm has been used with a single USV 
(Mono-SLAM) in various applications using various sensors. 
Kalyan et al. utilized a USV with an imaging payload in the 
form of underwater blazed array sonar within EKF-SLAM 
framework [4]. University of Michigan designed a USV with a 
3D hybrid camera-LIDAR vision system [5]; it has been shown 
that feature-based EKF-SLAM algorithm is really suitable for 
USVs because of the sparsity of obstacles on the water      
plane. Leedekerken et al. examined concurrent mapping above 
and below the water in large scale marine environments via 
SLAM [2]; their method allowed addressing the technical dif-
ficulties of GPS privation. The USV was equipped with 
sonar, LIDAR, camera, and radar. Radar sensor had been used 
in EKF-SLAM scenario [3] in a main work presenting a 
fundamental solution to SLAM problem. Furthermore, a 
notable research, using X-band marine radar for SLAM with a 
single USV, has been done by Mullane et al. [6] as a precious 
contribution to radar based navigation through a feature-
based SLAM framework. The point features have been 
extracted through an automated extraction routine based on a 
probabilistic landmark detector. 

For the cooperative SLAM implementation with USVs, a 
Multi-USV-based CSLAM approach has been proposed in [7] 
using laser sensors. The research adopted the Constrained 
Local Submap Filter (CLSF) approach, which had been 
presented in [8] and [9] to improve computational efficiency 
and data association. In CLSF approach, local submaps are 
fused periodically into a single global map; the common    
(duplicated) feature estimates are processed by a constraining 
operation as a weighted projection to produce a recovered 
estimate for each common feature. Therefore, in the 
CLSF-based cooperative SLAM, the performance gain (versus 
the single-USV case) depends only on the common features 
between the local submaps, while the non-common features 
do not contribute to the improvement due to the uncorrelated 
nature of local submaps. Consequently, in the case of absence 
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of common features in the overlapped areas, which is 
a possible situation in large-scale environments, there will not 
be improvement in localization accuracy and mapping 
performance, and CLSF-based CSLAM will act the same level 
of accuracy of Mono-SLAM or lower. 

This paper proposes a cooperative SLAM approach which 
allows vehicles to improve localization accuracy and mapping 
performance even with no common features, profiting from all 
observed features, which makes it a proper method for USVs 
using radar sensors. In the proposed approach, called 
Extended Observation-Cooperative SLAM (EO-CSLAM), the 
vehicles share observations and control data, and then, use the 
shared information together with vehicle-vehicle (v-v) 
observations to obtain additional correlated observations, 
which improves vehicle and map estimates. This 
improvement, in addition to the general benefits usually 
gained from cooperative frameworks, makes the proposed 
approach a proper choice for several tasks, such as harbour 
surveillance, exploration, environmental security etc, besides 
the extended observation (EO) principle allows implementing 
this approach with SLAM solutions other than EKF method. 

This paper is organized as follows: Section 2 defines the 
general framework for the EO-CSLAM approach, provides 
theoretical explanation of the algorithm adopting EKF-SLAM 
method, and proves the algorithm mathematically, while 
section 3 evaluates its utility and performance gain using sim-
ulations. Finally, conclusions are presented in section 4. 

2 DESIGN OF THE EO-CSLAM ALGORITHM 
In the main structure of the SLAM problem, the correlation 
between features (or landmarks) plays an essential role in the 
state estimate convergence. This correlation is a result of the 
common error in estimated vehicle location [3], where 
features’ estimates depend on the observations made by the 
vehicle from its location. Moreover, the update steps depend 
on the observation model which is, in turn, a function of 
estimated vehicle location and features estimates. In other 
words, the necessary correlation between features stems from 
the observation process. Consequently, if a vehicle gets an 
estimate of a feature observed by another vehicle, this estimate 
will be uncorrelated with its own features estimates, and if this 
estimated feature is non-common between the two vehicles, it 
cannot improve the estimates of the vehicle location and other 
features. For instance, Fig. 1 shows three features as samples 
of different situations: the common feature 0f  places in the 
intersection area of the two fields of view (FOV) of vehicles 
sensors, the feature 1f  is visible only for the vehicle b , and the 
feature 2f  is visible only for the vehicle a . As the two 
features, 0f  and 2f , are observed by the same vehicle ( a ), 

their two location estimates a
0f̂  and a

2f̂ , respectively, are 
correlated with each other and with the location of vehicle a , 

while both of them (i.e. a
0f̂ and a

2f̂ ) are independent from     
b
0f̂ , b

2f̂  and b . So, if the estimate a
2f̂  (generated by a ) is given 

to b , it can be added to its map but cannot improve 
localization accuracy of vehicle b  or its map because there is 

no correlation between a
2f̂  and vehicle b , in addition to that 

the feature 2f  is non-common between a  and b . In such a 
case, if a cooperative SLAM is performed via CLSF method, 
the improvement in localization accuracy of a  and b  is     

obtained by consolidating the two estimates, a
0f̂ and b

0f̂ , into a 
single estimate of the common feature 0f  to which both      
estimates belong. So, if a feature such as 0f  were not found, 
localization accuracy of vehicles would be similar to that of 
Mono-SLAM. 

 

 
 

Fig. 1: Two vehicles (a, b) performing SLAM independently, the estimates 
a
0f̂ and b

0f̂ are uncorrelated even that they belong to the same feature 0f . 
 

This section describes a cooperative approach which allows 
vehicles to profit from feature observations of each other to 
improve map and vehicle estimates even if those features are 
non-common. In other words, the proposed approach allows 
a  and b  to profit from observations of non-common features, 
like 1f  and 2f , to improve localization accuracy and mapping 
performance with or without common features like 0f . 

Subsection 2.1 describes the framework in which the 
proposed algorithm (EO-CSLAM) will be performed. 
Subsection 2.2 provides the theoretical foundation of the 
algorithm, while subsection 2.3 mathematically proves the 
algorithm convergence. 

2.1 EO-CSLAM framework 
To consider a general framework for the EO-CSLAM 
algorithm, it is assumed that a team of vehicles perform a 
collective task in an unknown environment. While moving 
through the environment, the vehicles use their sensors to 
obtain relative observations (measurements) of the features 
and vehicles within their fields of view (FOV). Assuming that 
the collaborating vehicles have the ability to share required 
information, each vehicle shares its observations and control 
signals with the collaborating vehicles. 
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For the marine environments case considered in this paper, 
the collaborating vehicles are a team of USVs with radar 
sensors. To demonstrate the algorithm, let’s consider the case 
of two USVs denoted a  and b  as shown pictorially in Fig.2 
involving only three features for simplifying. The features on 
sea surface can be artificial and/or naturally occurring 
elements [6], [9].Considering the surface planar motion, the 
start points of vehicles are firstly stored as initial positions 
with respect to a single global reference frame (XOY). Each 
vehicle initializes its global map in this frame with zero initial 
position uncertainty and then, continues (through the 
unknown environment) observing the features and vehicles in 
its FOV. The relative observations and control data are shared 
between the vehicles; the shared features' observations are 
used with the vehicle-vehicle (v-v) observations to generate 
additional correlated observations, such as ba

b
ab

11 zzz


+=  in 
Fig.2, while the shared control data are used by each USV to 
estimate and update the second vehicle's location. The 
additional correlated observations are called extended 
observations (EO). Next subsection explains the details of the 
EO-CSLAM algorithm. 

 
 

 
 

Fig. 2: EO-CSLAM by two USVs (a, b), solid arrows refer to local 
observations (of features in the FOV) while dashed arrows refer to 

extended observations, such as ab
1z . 

 

2.2 EO-CSLAM algorithm formulation 
First, the main quantities and their used symbols are defined 
together with motion and observation models. 

The true global pose of a vehicle v  ( bav ,= ) is denoted 
Tv

k
vT
k

v
k ],[ φqp =  (Fig. 3) involving its position Tv

k
v
k

v
k yx ],[=q  

and heading v
kφ  at the kth instant ck Tkt .= , where cT denotes 

the time interval between control signals and T][⋅ refers to 
transpose, so the k th true global pose of a  is: 

Ta
k

a
k

a
k

Ta
k

aT
k

a
k yx ],,[],[ φφ == qp     (1) 

The true global position of the thl  feature is denoted 
T

lll yx ],[=f , and its estimate generated by vehicle v at the kt  

instant is Tv
kl

v
kl

v
kl yx ]ˆ,ˆ[ˆ

,,, =f . If v
km  denotes the true map of a 

vehicle v  up to kt , the generated (or estimated) map will be 
TvT

kNv
vT

k
vT

k
v
k mmm ]ˆ..,,ˆ,ˆ[ˆ ,,2,1=m  containing Nv  feature estimates 

(e.g. Na  for vehicle a ). In fact, each vehicle generates its own 
map in a different order according to the sequence of observed 
features, i.e., when the feature lf  is observed by vehicle v  for 

the first time, its estimate v
kl

v
kim ,,

ˆˆ f≡ will be added to v
km̂ , and 

will be the thi  estimate in this map, where 1+= Nvi  and in 
general li ≠ . The vector TvT

k
vT
k

v
k ]ˆ,ˆ[ˆ mps =  represents the 

estimate of the true state vector TvT
k

vT
k

v
k ],[ mps =  with 

covariance v
kC . This state covariance comprises: v

ppkC  the 

covariance matrix of v
kp̂ , v

MMkC  the covariance matrix of v
km̂ , 

and v
pMkC  the cross-covariance between v  and v

km  as 
follows: 
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where v
qqkC  is the covariance matrix of v

kq̂ , and v
k
,2
,φσ  the 

heading variance of v . 
The motion model of the SLAM is usually written as: 

),,(1
v
k

v
k

v
k

v
k f wuss =+      (4) 

where v
ku  denotes the control vector applied at time kt  to 

drive the vehicle to state v
k 1+s  at time 1+kt , and v

kw  is zero 
mean uncorrelated Gaussian motion disturbances with 
covariance v

kQ . The observation model: 

k
v
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v
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v
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v
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where ),(~],[ k
T

k
r
kk nn R0v Nθ=  is a vector of additive zero 

mean uncorrelated Gaussian observation errors r
kn(  and )θ

kn  
in the feature range and bearing (respectively), see Fig.3. Thus: 
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Now, EKF steps of EO-CSLAM are performed as follows  
(considering the vehicle a as an example): 
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Fig. 3:  Vehicle v  is observing feature lf which represents the ith feature 

in its map. 

Initialization:      

Taaaaa yx ]ˆ,ˆ,ˆ[ˆˆ 00000
+++++ == φps     (6) 

with covariance ++ = a
pp

a
00 CC , where no features have been 

mapped yet ( =a
0m ∅). The vehicle a  stores the initial data of 

both vehicles, i.e. ( +a
0ŝ , +a

0C ) and ( +b
0ŝ , +b

0C ). In the following, 

the notation −⋅ k)(  refers to predicted values, while +⋅ k)(   refers 
to updated values, for ...3,2,1=k   
Prediction:  
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where a
k 1−F and a

k 1−L are  the Jacobeans of motion model [10]:   

+
−

∂∂=− a
k
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k
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k

fa
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As control data v
k 1−u  are shared, and having ( +

−
b
k 1ŝ , +

−
b
k 1C ), the 

vehicle a  obtains −b
kŝ and −b

kC of b  using (7) and (8), so the v-

v observation a
bz  is distinguished via data association (being 

assigned to −b
kq̂ of −b

kŝ ), and the shared local observations v
ikz  

are used to obtain extended observations as follows (dropping 
the time index k for simplifying):  

For each feature T
lll yx ],[=f observed by b , see Fig. 4, the 

vehicle b  transmits the local observation Tb
j

b
j

b
j r ],[ θ=z  to a , 

the vehicle a  now computes the extended observation of 
lf using an extended observation model eh  as follows: 

),,,(],[ bb
j
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T
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where  T
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a
b r ],[ θ=z  is the v-v observation of b  by a , thus 
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where              j
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b
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As the true values of headings aφ and bφ  are not available, 
their estimated values are used in (11), where the estimate   

−bφ̂ and its variance −b,2
φσ are extracted from −bŝ and −bC  

respectively: 
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T
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However, extended observation error covariance e
jR  for 

each lf is not the same as R  (the main observation error 

covariance of a
bz  and b

jz ), so the covariance matrix e
jR of ab

jz  
can be obtained based on (11) as follows: 
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Fig. 4:  Extended observation of lf by a 

 

Therefore, in addition to its main local observations, such 
as a

0z  and a
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features, like ab
0z  of 0f , and observations of the out-of-FOV 

features, like ab
1z  of 1f . 

For all these types of observation, data association is 
performed: for each observation associated with previous 
mapped feature, the innovation a

ikν  and its covariance ikE  are 
computed as follows: 
For local observations a

ikz : 

)ˆ,ˆ(ˆ a
k

a
k

a
ik

a
ik

a
ik

a
ik h mszzz −−=−=ν               (16a) 

k
aT
ik
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a
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For extended observations ab
ikz : 
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where sH ∂∂= ha
ik  is the Jacobean of the observation model h : 
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while for each observation belongs to a new observed feature, 
the location estimate a

ikf̂  is computed as follows: 
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where T
ikikik r ],[ θ=z  represents ab

ik
a
ik or zz , and then, the new 

estimate is combined to a
km̂  within −a

kŝ , while −a
kC  is 
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and  +a
iikC   is computed for local observations using kR : 

aT
zk

a
z

aT
p

a
ppk

a
p

a
iik JRJJCJC += −+               (25a) 

and using e
ikR  for extended observations  
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and so, the next period ( 1+k ) starts with (7) and (8) 
continuing with the same manner. 
 

2.3 Proof of the EO-CSLAM algorithm 
This subsection firstly explains the correlated nature of the 
feature estimates generated from extended observations via 
EO-CSLAM algorithm, and shows, in contrast, the               
uncorrelated nature of the estimates when they are taken from 
other vehicles, and then, proves the convergence of the      
proposed algorithm. 

Considering equation (23b) of the state covariance when 
augmenting a new feature estimate, it can be seen that the 
correlation (between the new estimate and both the vehicle 
and previous mapped features) depends on the Jacobean     

a
pJ  of the function ),( ik

a
kg zp . This function is actually the 

inverse function of the observation model, i.e. 
),(),( 1 v

k
v
kik

a
k hg mszp −= ,  see Fig. 3 and equations (5a,5b, 22). 

In fact, g transforms the polar form of ikz to an estimate a
ikf̂  in 

a Cartesian form, while h  works vice versa, that is, it converts 
the estimate v

k
a
ik mf ˆˆ ⊃  to an estimated observation ikẑ  in the 

polar form. This explains what previously mentioned: the 
necessary correlation (between features) stems from the 
observation process. Thus, since the function g  is applied   

according to (22) on both the observation types, local ( a
ikz ) and 

extended ( ab
ikz ), the feature estimates resulting from     extend-

ed observations will be also correlated as those from the local. 
While, on the other hand, assuming that the vehicle a  gets a 
ready estimate b

jkf̂ (generated by the vehicle b ) with its covar-

iance +b
jjkC , the augmentation process (23 a, b) will be done as 

follows: 

[ ]TbT
jk

aT
k

Ta
k

TbT
jk

a
k

a
k fmp(fss ˆ,ˆ,)ˆ]ˆ,ˆ[ˆ −−+ ==                               (27a) 
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where no observation process is done ( 0J =a
p ); and now, if a 

new estimate a
ikf̂  is generated by an observation process, the 

result of applying (23 a, b) again on (27 a, b), will be 
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It is clear that the estimate a
ikf̂  (augmented from an observed 

feature) is correlated with the vehicle and previous map, while 
the estimate b

jkf̂  (generated by another vehicle) remains      
uncorrelated. Furthermore, considering the structure of Jaco-
bian a

ikH  of the observation model h  in (18), it can be  noted 
that all its entries are zeros except the columns           corre-
sponding to the vehicle ( p∂∂h ) and the observed feature 

( f∂∂h ). So, as a result of using a
ikH  for computing ikE  and 

a
ikK , this structure makes the correlated estimate a

ikf̂  (of the 
observed feature) the only estimate that affects the state     

−a
kŝ (20) and covariance −a

kC (21). 
The convergence of the ordinary EKF-SLAM has been    

theoretically proved and practically validated by the radar-
based demonstration in the fundamental EKF-SLAM solution 
in [3]. Considering the notation differences, it has been shown 
that this convergence stems from the positive semidefinite 
(psd) nature of the matrices ( +v

0C , vQ  and R ). 

The main property of psd matrices states: If nnRA ×∈  is psd, 

then, for any matrix nmRB ×∈ , TBAB  is psd. Consequently, 

from (14), since R is psd and 0,2
, ≥v
kφσ , the covariance matrix 

e
jR of the extended observation is also psd, and so will be all 

the matrices −a
kC  in (8), ikE in (17 a, b), and vT

ikik
a
ik KEK in (21) 

are all psd, so from (21)  

−−+ ≤−= a
k

vT
ikik

a
ik

a
k

a
k CKEKCC det][det                                    (29) 

This ensures that the total uncertainty of the state estimate 
does not increase during an update, where the determinant 
of +a

kC , the state covariance matrix, is a measure of total     

uncertainty in the state estimate +a
kŝ . Since the covariance   

matrix e
ikR  of the extended observation is psd as R of the  

local observation, the EO-CSLAM approach keeps this       
convergence. 

This result agrees with convergence properties of both 
Kalman filter and SLAM algorithm, i.e., as the vehicle moves 
through the environment taking observations, the estimation 
error reduces monotonically [3]. This reduction, as explained 
above, requires that the estimates to be correlated. Thus, since 
the EO-CSLAM approach provides collaborating vehicles with 
additional correlated estimates, more decrease is gained in the 
estimation errors. 

In addition to this mathematical proof, section 3 provides 

simulations conducted to verify the validity, utility, and     
performance gain of the EO-CSLAM. 

3 SIMULATION RESULTS 
This section verifies the validity of EO-CSLAM algorithm   
using simulation. At first, ordinary single-USV SLAM (Mono-
SLAM) is performed for obtaining independent localization 
results for every USV. Secondly, the EO-CSLAM algorithm is 
performed and its results are compared with Mono-SLAM. 
And then, the CLSF-based CSLAM algorithm, from [7], is   
performed in order to compare the performance of the two 
approaches, EO-CSLAM and CLSF, in two cases: when there 
are common features in the overlapped area between the 
FOVs of USVs, and the case of absence of such common     
features. 

In order to perform SLAM algorithm simulation, we have 
designed a simple virtual marine environment so that allows 
inserting point features and pre-planned trajectories to be  
followed by the USVs. Fig. 5 shows an example of 
a km10km10 × area with an arbitrary coast line and ten       
inserted features. The point features are assumed to be       
outputs of signal processing algorithms [3] and extraction  
routines that detect the point targets while suppress land   
reflections [6]. Two USVs ( a  and b ) were inserted and driven 
along two closed trajectories of about 1.7 km-long. Dashed 
circles show the range/field-of-view FOV of each vehicle at 
the start time. The 5km-range of radar sensor was chosen 
agreeing with actual detection capability on the sea surface 
such as in [6]. 

 
Fig. 5:  A simple virtual marine environment including two USVs (a and b) 

are taken on two closed trajectories (zooming in on b at the start point). 
 
First, a Mono-SLAM is performed for the case of Fig. 5 by each 

vehicle independently. It can be noted, from Fig. 5, that the     
vehicle a, through its tour, can observe six features from ten, 
while b can observe eight features (the eighth feature become 
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b 

1360 1380 1400 1420 1440 1460

-320

-300

-280

-260

-240

-220

-200

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    798 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

inside FOV during the vehicle tour). Fig. 6 illustrates the          
positional estimation errors in X and Y of both vehicles, a  and b , 
together with 95% ( σ2 ) confidence limits in the estimation error, 
in addition to norms of position covariances. The errors in the 
vehicle estimates are within the σ2 covariance bounds showing 
that the SLAM filter is well tuned. Once a vehicle moves through 
the unknown environment, the motion disturbances, 

),(~ kk Q0w N , adds uncertainty to its position estimate, and 
the vehicle covariance grows, but as it continues taking            
observations, the error in the feature estimates reduces           
monotonically, what restricts the vehicle positional errors. 

Next, the EO-CSLAM is performed for the same case of Fig.5. 
Considering the norm of covariance as a total criterion for SLAM 
performance, Fig. 7 illustrates a comparison of norms of position 
covariance in both cases, Mono-SLAM and EO-CSLAM. It is   
obvious that the uncertainty in the vehicle position estimate via 
EO-CSLAM decreases noticeably versus Mono-SLAM. This    
improvement is due to the additional correlated feature estimates 
generated by each vehicle through the extended observation way. 
Fig. 7 shows also the improvement ratio ( IR ) for each USV, 
which represents the reduction in the uncertainty as a percentage 
of the Mono case, defined as 

%100
||||

||||||||
×

−
=

Monoqq

EOqqMonoqqIR
C

CC
                 (30) 

where |||| qqC  is the norm of vehicle position covariance. In other 
words, the EO-CSLAM approach has removed about 40% of the 
localization errors for the vehicle a , and more than 30% of that 
for b . 

In order to analyse and compare the mapping performance of 
EO-CSLAM versus Mono-SLAM, the global map estimated by 
the vehicle b is illustrated in Fig. 8. Due to the large-scale map, 
and in order to clarify the difference between the two cases,  
close-up views of three features are also shown in the figure. Each 
numbered point is, actually, two ellipses, one of them represents 
the 95% confidence area of the feature estimate via EO-CSLAM 
(at the final instant), while the second is for the same feature, but 
via Mono-SLAM. However, the close-up view of the 10th feature 
shows only an ellipse of the EO case; where the features 9 and 10 
were always out of FOV of b , see Fig. 5. So, while the vehicle b  
has mapped eight features of the ten via Mono-SLAM, it was able 
to map all the ten features by EO-CSLAM approach.                 
Furthermore, from the close-up ellipses of the 1st and 5th features, 
it can be observed that the location covariances of EO-CSLAM are 
smaller (better) than those for Mono-SLAM. This improvement 
can be seen more obviously in Fig. 9; instantaneous comparison 
of two features’ norm of covariance is shown for the two      
methods. The shown numbers are the lower bounds to which the 
feature estimates have converged. It is obvious that the             
estimation errors in the EO case are smaller than those of Mono. 

Moreover, while the vehicle b in Mono-SLAM case does not 
see the 8th feature until 17.815=kt sec (Fig 9), it observes this     
feature indirectly using EO-CSLAM from the beginning with 
helping of a ; this can be seen also in Fig.5 where the 8th feature 
falls out of FOV at the start time, but it is near enough to become 

inside during the vehicle tour. 
Consequently, in addition to improving the localization         

accuracy, EO-CSLAM approach allows the collaborating USVs to 
map more features with more accuracy than the Mono-SLAM 
case. 

After verifying the validity of the EO-CSLAM algorithm and 
its superiority on the Mono-SLAM, the CLSF-based CSLAM   
algorithm is performed for the same case of Fig. 5, which contains 
common features in the overlapped area between the two FOVs. 
Fig. 10 compares the norms of position covariances for the three 
methods. It can be noted that the EO-CSLAM algorithm, in the 
first and last parts of the tour duration, produces lower (better) 
uncertainty than CLSF, while CLSF approach produces            
uncertainty lower than EO-CSLAM in most of the middle        
periods. At the end of each period, a sharp reduction occurs in 
the errors of CLSF; this reduction results from the periodic      
minimization of the constraints (the duplicated estimates of 
common features), and during each period, the errors grow again 
where vehicles start new SLAM operation in each period. So, the 
performance gain of CLSF cooperative approach requires     
common features existence. 
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Fig. 6:  The two USVs’ positional estimation errors in X and Y, together 
with 95% confidence bounds (dotted lines), for Mono-SLAM, in addition 

to norms of position estimate covariance. 
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Fig. 7:  The comparison of the two vehicles’ norm of position covariance in 
Mono-SLAM case with EO-CALM together with the improvement ratio. 
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For comparing the performance in the case of absence of any 
common feature, the three approaches (Mono, EO, and CLSF) are 
performed for the case of Fig. 11; the case is identical to that of 
Fig. 5 except that the common features has been moved to be 
non-common. The resulting norms of position covariances are 
shown in Fig. 12. As expected previously, while the EO-CSLAM 
provides noticeable performance improvement versus Mono-
SLAM, the CLSF cooperative method yields the same level of 
accuracy of Mono-SLAM or lower (higher uncertainty). This is 
because no common features between the USVs to make the   
required constraints for CLSF. Additionally, as explained in    
subsection 2.3, the shared, uncorrelated feature estimates cannot 
improve the estimation of vehicle’s location. On the other hand, 
due to the correlated estimates generated by the extended       
observation, the EO-CSLAM approach allows vehicles to         
improve map and vehicle estimates even if features were         
non-common. 
 

 
 

Fig. 8:  The map of vehicle b, and close-up of three features: first, fifth, and 
tenth, showing their 95% (2σ) ellipses for Mono (light-line ellipses) and    

EO-CSLAM (bold ellipses). 
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Fig. 9: The comparison of norm of covariance for two features (F) in the 
Mono-SLAM case with EO-CSLAM. 
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Fig. 10:  The comparison of the two vehicles’ norm of position covariance 
in Mono-SLAM, EO-CALM and CLSF-CSLAM with common features. 

 

 
Fig. 11:  A testing case with the same previous trajectories, the common 

features has been moved, so there are no longer common features. 
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Fig. 12: The comparison of the two vehicles’ norm of position covariance 
in Mono-SLAM, EO-CALM and CLSF-CSLAM without common features, 

and also the improvement ratio of EO-CALM versus Mono-SLAM. 
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4 CONCLUSIONS 
This paper has proposed an efficient approach to cooperative 
simultaneous localization and mapping (CSLAM), called 
extended observation-cooperative SLAM (EO-CSLAM). The 
proposed algorithm depends on the fact that the necessary cross-
correlation between the vehicle and features, required for SLAM 
convergence, arises from the observation process. 

First, the formulation of EO-CSLAM algorithm has been 
demonstrated and mathematically verified, and then, its validity 
has been evaluated using simulations for the case of unmanned 
surface vehicles (USVs) with radar sensors. Simulation results 
have shown that the EO-CSLAM algorithm improves localization 
accuracy and mapping performance (compared with Mono-
SLAM) and allows the collaborating vehicles to map larger areas 
with more accurate estimation of features’ locations. 

It has been shown that the EO-CSLAM algorithm does not 
required common features to provide performance gain. 
Therefore, in the case of absence of common features between 
vehicles, EO-CSLAM acts better than Constrained Local Submap 
Filter (CLSF) cooperative SLAM, which needs such common 
features (constraints) to provide accuracy better than Mono-
SLAM. 
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